Model Ensemble Algoritma Naive Bayes Dan Random Forest Dalam Klasifikasi Penyakit Paru-paru Untuk Meningkatkan Akurasi
DOI:
https://doi.org/10.37476/smartlock.v2i2.4407Keywords:
Naïve Bayes, Random Forest, Accuracy, ClassificationAbstract
This study explores an ensemble model combining Naive Bayes and Random Forest algorithms in the classification of lung diseases with the aim of improving accuracy. Involving a dataset of 30,000 instances, the research yields excellent performance in various aspects, including accuracy, precision, and recall. The combination of the Naïve Bayes model with Random Forest integrated using the VotingClassifier proves superior compared to using the Naïve Bayes model alone. Experimental results demonstrate that the ensemble model achieves an accuracy of 93%, with precision reaching 87.03%, and a recall of 100%. This superiority emphasizes that integrating the strengths of Naive Bayes and Random Forest in an ensemble approach can enhance the predictive capabilities of the classification system. The study significantly contributes to improving the diagnosis of lung diseases, opening opportunities for the development of more efficient classification systems in medical practice. Thus, this research not only enhances classification accuracy but also provides guidance for the development of artificial intelligence-based solutions in the healthcare domain.
References
D. Andita Kusuma, J. Teknik Informatika, I. Darmajaya, J. A. Pagar Alam, and B. Lampung, “Rancang Bangun Sistem Pakar Pendiagnosa Penyakit Paru-Paru Menggunakan Metode Case Based Reasoning,” 2014.
K. Vembandasamy, R. Sasipriya, and E. Deepa, “Heart Diseases Detection Using Naive Bayes Algorithm,” International Journal of Innovative Science, Engineering & Technology, vol. 2, no. 9, pp. 441–444, 2015.
W. Gata et al., “Algorithm Implementations Naïve Bayes, Random Forest. C4.5 on Online Gaming for Learning Achievement Predictions,” vol. 258, no. Icream 2018, 2019, doi: 10.2991/icream-18.2019.1.
U. K. Kumar, M. B. S. Nikhil, and K. Sumangali, “Prediction of Breast Cancer using Voting Classifier Technique,” 2014.
A. N. Repaka, S. D. Ravikanti, and R. G. Franklin, “Design And Implementing Heart Disease Prediction Using Naives Bayesian,” Proceedings of the Third International Conference on Trends in Electronics and Informatics (ICOEI 2019), 2019.
M. Ardiansyah, W. Hidayat, E. Utami, and S. Raharjo, “CPU and eGPU Support System Based on Naive Bayes Classification,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 2, p. 165, Apr. 2021, doi: 10.22146/ijccs.63689.
J. L. Speiser, M. E. Miller, J. Tooze, and E. Ip, “A comparison of random forest variable selection methods for classification prediction modeling,” Expert Systems with Applications, vol. 134. Elsevier Ltd, pp. 93–101, Nov. 15, 2019. doi: 10.1016/j.eswa.2019.05.028.
A. Mahabub, “A robust technique of fake news detection using Ensemble Voting Classifier and comparison with other classifiers,” SN Appl Sci, vol. 2, no. 4, Apr. 2020, doi: 10.1007/s42452-020-2326-y.
S. Syamsiah, “PERANCANGAN FLOWCHART DAN PSEUDOCODE PEMBELAJARAN MENGENAL ANGKA DENGAN ANIMASI UNTUK ANAK PAUD RAMBUTAN,” 2019.
Sahar, “Analisis Perbandingan Metode K-Nearest Neighbor dan Naïve Bayes Classiffier pada Data Set Penyakit Jantung,” Indonesian Journal of Data and Science (IJODAS), vol. 1, no. 3, pp. 79–86, 2020.
C. Accinelli, S. Minisi, and B. Catania, “Coverage-based Rewriting for Data Preparation,” 2020.
S. Anisah, A. S. Honggowibowo, and A. Pujiastuti, “Klasifikasi Teks Menggunakan Chi Square Feature Selection Untuk Menentukan Komik Berdasarkan Periode, Materi Dan Fisikdengan Algoritma Naivebayes,” Compiler, vol. 5, no. 2, pp. 59–66, 2016, doi: 10.28989/compiler.v5i2.171.
I. Ahmad, M. Basheri, M. J. Iqbal, and A. Rahim, “Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection,” IEEE Access, vol. 6, pp. 33789–33795, 2018, doi: 10.1109/ACCESS.2018.2841987.
I. Düntsch and G. Gediga, “Indices for rough set approximation and the application to confusion matrices,” International Journal of Approximate Reasoning, vol. 118, pp. 155–172, 2020, doi: 10.1016/j.ijar.2019.12.008.