PEMANFAATAN MACHINE LEARNING UNTUK ANALISIS ULASAN PELANGGAN DAN KINERJA PENJUALAN DI TOKOPEDIA
DOI:
https://doi.org/10.37476/akmen.v22i1.5451Keywords:
Machine Learning, Customer Reviews, Sales Performance, TokopediaAbstract
This study analyzes Tokopedia customer reviews to link review characteristics with sales indicators and to deliver an operational ranking tool. Using the public file tokopedia-product-reviews-2019.csv (40,476 reviews, 3,662 products, 158 shops, 5 categories), text was normalized, Indonesian stopwords were removed with Sastrawi, types were fixed, and duplicates were pruned. Star ratings were mapped as weak labels for negative, neutral, and positive sentiment. Descriptive analyses covered rating and sentiment distributions, category sales, top and bottom products, extreme reviews, and the 30 most frequent words. A composite Best Product to Sell index was proposed: 0.5·sold_norm + 0.3·avg_rating_norm + 0.2·pos_ratio_norm, with a minimum review threshold and min–max scaling. Findings show a strong positive skew in ratings and sales concentrated in a small set of SKUs and categories (notably sports, electronics, fashion). Negative reviews focus on shipping delays, packaging safety, and order administration, while positive reviews fit to description, quality, fast shipping, and price. The index highlights candidates for scale up and flags items needing diagnosis, offering a reproducible and extensible workflow for marketplace portfolio decisions.
References
Agiharta, K. F., Suteja, B. R., & Ayub, M. (2024). Penerapan Sentence BERT Untuk Similaritas Kompetensi Pekerjaan dan Mata Kuliah. Jurnal Teknik Informatika dan Sistem Informasi, 10, 449. https://doi.org/10.28932/jutisi.vXiX.X
Ashbaugh, L., & Zhang, Y. (2024). A Comparative Study of Sentiment Analysis on Customer Reviews Using Machine Learning and Deep Learning. Computers, 13(12). https://doi.org/10.3390/computers13120340
Chen, T., Samaranayake, P., Cen, X. Y., Qi, M., & Lan, Y. C. (2022). The Impact of Online Reviews on Consumers’ Purchasing Decisions: Evidence from an Eye-Tracking Study. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.865702
Demir, G., Chatterjee, P., & Pamucar, D. (2024). Sensitivity analysis in multi-criteria decision making: A state-of-the-art research perspective using bibliometric analysis. Expert Systems with Applications, 237, 121660. https://doi.org/10.1016/J.ESWA.2023.121660
Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. http://arxiv.org/abs/2203.05794
Hadiwijaya, M. A., Pirdaus, F. P., Andrews, D., Achmad, S., & Sutoyo, R. (2023). Sentiment Analysis on Tokopedia Product Reviews using Natural Language Processing. 2023 International Conference on Informatics, Multimedia, Cyber and Information Systems, ICIMCIS 2023, 380–386. https://doi.org/10.1109/ICIMCIS60089.2023.10348996
Hidayansyah, R., Ahmad, A., & Nabila, I. (2023). The Impact of Consumer Reviews and Ratings on Purchase Decisions on the Tokopedia Marketplace in Indonesia. Dalam International Journal of Economics (Vol. 6, Nomor 2).
Hui, G., Al Mamun, A., Reza, M. N. H., & Hussain, W. M. H. W. (2025). An empirical study on logistic service quality, customer satisfaction, and cross-border repurchase intention. Heliyon, 11(1). https://doi.org/10.1016/j.heliyon.2024.e41156
Kadarsih, K., & Pujianto, D. (2025). Application Of Transformer Model And Word Embedding In Sentiment Analisys Of Indonesian E-Commerce Application Review. Journal of Computer Networks, Architecture and High-Performance Computing, 7(3), 720–732. https://doi.org/10.47709/cnahpc.v7i3.6354
Koto, F., Rahimi, A., Lau, J. H., & Baldwin, T. (t.t.). IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP. Online. https://huggingface.co/
Limbong, J. S, A., Sembiring, I., & Hartomo, K. D. (2022). Analisis Klasifikasi Sentimen Ulasan Pada E-Commerce Shopee Berbasis Word Cloud Dengan Metode Naive Bayes Dan K-Nearest Neighbor Analysis Of Review Sentiment Classification On E-Commerce Shopee Word Cloud Based With Naïve Bayes And K-Nearest Neighbor Methods. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 9(2). https://doi.org/10.25126/jtiik.202294960
Qiu, K., & Zhang, L. (2024). How online reviews affect purchase intention: A meta-analysis across contextual and cultural factors. Data and Information Management, 8(2). https://doi.org/10.1016/j.dim.2023.100058
Rahmawati, N., & Mangifera, L. (2024). Purchase Decision Through Tokopedia Marketplace: The Role of Consumer Trust in Mediating the Effect of Price and Product Reviews (hlm. 686–699). https://doi.org/10.2991/978-94-6463-204-0_57
Rizkia, A. S., Wufron, W., & Roji, F. F. (2025). Analisis Sentimen Coretax: Perbandingan Pelabelan Data Manual, Transformers-Based, dan Lexicon-Based pada Performa IndoBERT. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(3). https://doi.org/10.57152/malcom.v5i3.2151
Sahabuddin, R., Risnayani, A., Amalia Rofiidah, S., Sayu Puspitaningsih Dipoatmodjo, T., Studi Manajemen, P., Ekonomi dan Bisnis, F., & Negeri Makassar, U. (2024). Analisis Dampak Review Produk Di Shopee Terhadap Minat Beli Dengan Kepercayaan Pelanggan Sebagai Mediator. Journal Management & Economics Review (JUMPER), 2(1).
Sopiandi, I., Hidayat, R. W., & Damara, R. N. (2025). Analisis Pemetaan Ilmiah tentang Perkembangan Explainable Artificial Intelelligence. Explore, 15(2), 91–100. https://doi.org/10.35200/ex.v15i2.166
Vu, T. P., & Nguyen, D. T. (2025). The links between e-logistics service quality, attitude and repurchase intention of Gen Z in e-commerce. Journal of Trade Science, 13(2), 87–109. https://doi.org/10.1108/jts-12-2024-0072
Wang, Q., Zhang, W., Li, J., Mai, F., & Ma, Z. (2022). Effect of online review sentiment on product sales: The moderating role of review credibility perception. Computers in Human Behavior, 133, 107272. https://doi.org/10.1016/J.CHB.2022.107272
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 AkMen JURNAL ILMIAH

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Penulis yang menerbitkan pada Jurnal Ilmiah AkMen menyetujui persyaratan berikut:
- Penulis memiliki hak cipta dan memberikan hak Jurnal Ilmiah AkMen untuk publikasi pertama dengan karya yang secara bersamaan dilisensikan di bawah Lisensi Atribusi Creative Commons (CC BY 4.0) yang memungkinkan orang lain untuk berbagi (menyalin dan mendistribusikan kembali materi dalam media atau format apa pun) dan beradaptasi (mencampur) , mentransformasikan, dan membangun di atas bahan) karya untuk tujuan apa pun,
- Penulis dapat membuat perjanjian kontrak tambahan yang terpisah untuk distribusi non-eksklusif versi jurnal, yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di Jurnal Ilmiah AkMen
- Penulis diizinkan dan didorong untuk memposting pekerjaan mereka secara online (misalnya, dalam repositori institusional atau di situs web mereka) sebelum dan selama proses pengajuan, karena dapat menyebabkan pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan.